RANCANGAN MASALAH MATEMATIKA UNTUK MENGIDENTIFIKASI BERPIKIR GEOMETRIS SISWA

Noor Fajriah

Sari


Geometric thinking has a very important role in developing students' mathematical thinking. To find out geometric thinking students needed a problem that could identify geometric thinking. The problem must be in accordance with the objectives to be measured, to meet validity and reliability as a valuation tool. The purpose of this research was to obtain the design of geometry problems to be able to identify valid and reliable geometric thinking. The descriptive method was used in this research. There are 6 people as validators and 3 junior high school students for testing. The results obtained prototype problems designed to pay attention to aspects of the material in accordance with the level of junior high school students and bring visualization, construction and reasoning activities. The construction aspect in which the problem does not lead to multiple interpretations. is clear and uses a question word/ command whose completion is a description. Aspects of language where the language is communicative easily understood and in accordance with the rules of the Indonesian language is good and true and meets the criteria of legibility.

Kata Kunci


berpikir geometris, masalah geometri, instrument penilaian, berpikir tingkat tinggi

Teks Lengkap:

TEKS PDF

Referensi


Alsina, C. & Nelsen, R. B. (2006). Math Made Visual Creating ─░mages for Understanding Mathematics. New York: The Mathematical Association of America.

Chikwere, P., & Ayama, K. Teaching of Geometric Construction in Junior High School: An Intervention. Journal of Elementary Education, 26(1), 139-146.

Creswell, J. (2015). Riset Pendidikan: Perencanaan, Pelaksanaan dan Evaluasi Riset Kualitatif dan Kuantitatif. Yogyakarta: Pustaka Pelajar.

Duval, R. (1998). Geometry from a Cognitive Point of View. New ICMI Studies Series, 5, 37-51.

Erduran, A. dan Yesildere, S. (2010). The Use of a Compass and Straightedge to Construct Geometric Structures. Elementary Education Online, 9(1).

Fajriah, N. (2015). Kriteria Berpikir Geometris Siswa SMP dalam Menyelesaikan Masalah Geometri. Math Didactic: Jurnal Pendidikan Matematika, 1(2), 103-108.

Goos, M., Stillman, G. & Vale, C. (2007). Teaching Secondary School Mathematics (Research and Practice for the 21st Century). Australia: Allen & Unwin.

Hershkowitz, R. (1990). Psychological aspects of learning geometry. Mathematics and cognition: A research synthesis by the International Group for the Psychology of Mathematics Education, 70-95.

Hoffer, A. (1981). Geometry More than Proof. Mathematics Teacher, 74(1), 11-18. (Online), (http://ilkogretim-online.org.tr), diakses 1 Agustus 2016.

Moleong. L.J. (2011). Metode Penelitian Kualitatif. Bandung: PT, Remaja Rosdakarya.

National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. Reston, VA: NCTM.

Santrock, J.W. (2007). Psikologi Pendidikan. Alih bahasa Wibowo, T. Jakarta: Kencana Prenada Media Group.

Sugiyono. (2014). Metode Penelitian Kuantitatif Kualitatif dan R & D. Bandung: Alfabeta.

Surapranata, S. (2004). Analisis, Validitas, Reliabilitas, dan Interpretasi Hasil Tes. Bandung: PT. Remaja Rosdakarya.

Torregrosa, G dan Quesada, H. (2008). The Coordination of Cognitive Processes In Solving Geometric Problems Requiring Formal Proof. In Proceedings of the Joint Meeting of the 32nd Conference of the International Group for teh Psychology of Mathematics Education, and the XX North American (Vol. 4, pp. 321-328).

Zimmermann, W. & Cunningham, S. (2011). Editors Introduction: What is Mathematical Visualization. In Visualization in Teaching and Learning Mathematics. Mathematical Association of America, 1-8.




DOI: http://dx.doi.org/10.22236/KALAMATIKA.vol3no1.2018pp39-50

Article Metrics

Abstract view : 190 times

TEKS PDF - 0 times

Refbacks

  • Saat ini tidak ada refbacks.


##submission.copyrightStatement##

##submission.license.cc.by-sa4.footer##

Jurnal KALAMATIKA terindeks Google Scholar, ISJD, DOAJ, SINTA, IPI, ResearchBib, DRJI, ESJIndex, SIS, Cosmos Impact Factor, Indonesia OneSearch, dan Microsoft Academic. E-ISSN: 2527-5607 | P-ISSN: 2527-5615. Untuk info atau pertanyaan mengenai website atau jurnal secara umum, silahkan email ke kalamatika@uhamka.ac.id Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.